Exponential Smoothing Forecast Method: It is a time series used previous data to forecast future data. It is used to forecast short term data. It does not able to forecast future trend with the help of previous data. It is a simple method to forecast future demand with the help of past actual demand data and by using alpha.
Formula:
Ft = αAt-1 + (1-α) Ft-1
Where,
Ft = Forecast demand for week t
Αt-1 = previous period actual demand
Ft-1 = previous period forecast demand
And α =Smoothing constant
Common Measures of Error
Mean Absolute Deviation (MAD):
MAD = Ʃ ǀ
actual –forecast ǀ / n
Mean Squared Error (MSE):
MSE = Ʃ
(forecast errors) 2 / n
Mean Absolute Percentage Error:
MAPE = 100*
Ʃ
ǀ actual i –forecast i
ǀ/actual i / n
Example: Find out
the future demand with the help of using exponential smoothing forecast method.
Alpha (α) is 0.2.
Time period |
Actual Demand(At) |
Forecast demand(Ft) |
1 |
480 |
300 |
2 |
460 |
- |
3 |
340 |
- |
4 |
490 |
- |
5 |
400 |
- |
6 |
370 |
- |
7 |
580 |
- |
Time period |
Actual Demand(At) |
Forecast demand(Ft) |
At-Ft |
(At-Ft)2 |
|
1 |
480 |
300 |
180 |
32400 |
|
2 |
460 |
336 |
124 |
15376 |
|
3 |
340 |
360.8 |
|
432.64 |
|
4 |
490 |
356.64 |
133.36 |
17784.89 |
|
5 |
400 |
383.31 |
16.69 |
278.5561 |
|
6 |
370 |
386.65 |
-16.65 |
277.2225 |
|
7 |
580 |
383.32 |
|
38683.02 |
Ft = αAt-1 + (1-α) Ft-1
= 0.2(480) + (1-0.2)300
= 96 + 0.8*300
= 96+240
F2=336
Ft = αAt-1 + (1-α) Ft-1
= 0.2(460) + (1-0.2)336
= 92 + 268.8
F3=
360.8
Ft = αAt-1 + (1-α) Ft-1
= 0.2(340) + (1-0.2)360.8
= 68 + 288.64
= 356.64
Ft = αAt-1 + (1-α) Ft-1
= 0.2(490) + (1-0.2)356.64
= 98 + 285.31
= 383.31
Ft = αAt-1 + (1-α) Ft-1
= 0.2(400) + (1-0.2)383.31
= 80 + 306.65
= 386.65
Ft = αAt-1 + (1-α) Ft-1
= 0.2(370) + (1-0.2)386.65
=74 + 309.32
= 383.32
Example: Find out
the “α” with the help of given information:
Time |
Actual demand (At) |
Forecast demand (Ft) |
1 |
80 |
80 |
2 |
72 |
80 |
3 |
85 |
76 |
Solutions:
With
the help of Forecast method we calculate “α”:
Let’s take
F3 value:
Ft = Ft-1 + α (At-1-Ft-1)
76 = 80 + α (72-80)
76 = 80 + (-8α)
-4/-8= α
And α = 0.5
Example: Find out
the mean squared error and mean absolute deviation with the help of following
information:
Time period |
Actual Demand(At) |
Forecast demand(Ft) |
1 |
265 |
290 |
2 |
325 |
300 |
3 |
340 |
320 |
4 |
280 |
360 |
5 |
400 |
260 |
6 |
320 |
275 |
7 |
220 |
330 |
8 |
260 |
290 |
Time
period |
Actual
Demand(At) |
Forecast
demand(Ft) |
At - Ft |
ǀ At –
Ft ǀ |
(ǀ At –
Ft ǀ)^2 |
(ǀ At –
Ft ǀ / At)*100 |
1 |
265 |
290 |
-25 |
25 |
625 |
9.43 |
2 |
325 |
300 |
25 |
25 |
625 |
7.69 |
3 |
340 |
320 |
20 |
20 |
400 |
5.88 |
4 |
280 |
360 |
-80 |
80 |
6400 |
28.57 |
5 |
400 |
260 |
140 |
140 |
19600 |
35.00 |
6 |
320 |
275 |
45 |
45 |
2025 |
14.06 |
7 |
220 |
330 |
-110 |
110 |
12100 |
50.00 |
8 |
260 |
290 |
-30 |
30 |
900 |
11.54 |
Total |
|
|
|
475 |
42675 |
162.18 |
MAD = Ʃ (ǀ actual –forecast ǀ)/ n
= 475/8
= 59.38
MSE = Ʃ (forecast errors) 2 / n
= 42675 /8
= 5,334.38
MAPE = 100* Ʃ ǀ actual i –forecast i ǀ/actual
i / n
= 162.18/8
= 20.27
Comments
Post a Comment